Elizabeth Green’s recent article and book excerpt “Why Do Americans Stink at Math?” has drawn keen responses from Dan Willingham, Robert Pondiscio, and others.Still, one problem needs more emphasis: the lack of focus in the classroom. Math, like most other subjects, requires not only knowledge, but concentrated and flexible thinking, on the part of teachers and students alike. With this in place, a number of pedagogical approaches may work well; without it, pedagogy after pedagogy will flail. The ongoing discussion has upheld a false opposition between old “rote” methods and (supposedly) new methods devoted to “understanding.” It is time to see beyond this opposition.

By “focus,” I mean concerted attention to the topic at hand. This is not the same as perfect behavior; I have known some “wiggly” students who were clearly thinking about the lesson. Nor does it mean passive intake; to the contrary, it can involve a great deal of questioning, comparison, imagination, and so forth. Such focus is largely internal; in this way it differs from what people commonly call “engagement.” A student may be highly focused while doing nothing physically; a student may be visibly active (in lesson activities) but not thinking in depth about the subject.

After leading into her discussion with a story, Green asserts that reforms such as the Common Core will fail if teachers have not been properly trained to implement them. “The new math of the ‘60s, the *new* new math of the ‘80s and today’s Common Core math all stem from the idea that the traditional way of teaching math simply does not work,” she writes. Improperly trained teachers will turn them into nonsense or, at best, a set of rote procedures:

Most American math classes follow … a ritualistic series of steps so ingrained that one researcher termed it a cultural script. Some teachers call the pattern “I, We, You.” After checking homework, teachers announce the day’s topic, demonstrating a new procedure: “Today, I’m going to show you how to divide a three-digit number by a two-digit number” (I). Then they lead the class in trying out a sample problem: “Let’s try out the steps for 242 ÷ 16” (We). Finally they let students work through similar problems on their own, usually by silently making their way through a work sheet: “Keep your eyes on your own paper!” (You).

Green contrasts this with a “sense-making” method used by the elementary school teacher and scholar Magdalene Lampert:

She knew there must be a way to tap into what students already understood and then build on it. In her classroom, she replaced “I, We, You” with a structure you might call “You, Y’all, We.” Rather than starting each lesson by introducing the main idea to be learned that day, she assigned a single “problem of the day,” designed to let students struggle toward it — first on their own (You), then in peer groups (Y’all) and finally as a whole class (We). The result was a process that replaced answer-getting with what Lampert called sense-making. By pushing students to talk about math, she invited them to share the misunderstandings most American students keep quiet until the test. In the process, she gave them an opportunity to realize, on their own, why their answers were wrong.

Like many others, Green confuses the outer trappings of the pedagogy with its internal intent and sense. A teacher at the front of the room, doing a great deal of the talking, could push the students’ thinking much more than a teacher who has them struggle on their own. Within each of these approaches, there can be variation. What makes the difference is the teachers’ and students’ knowledge of the subject, their willingness to put their mind to the topic at hand, and their flexibility of thought. (Willingham does address teachers’ knowledge and flexibility–but more needs to be said about the students’ own attitudes toward the lesson.)

The “elephant in the room” is our devotion to *damage control* in the name of something lofty. We are trying to repair situations where students are not doing all they can to master the material. Likewise, we are shaping the teaching profession to be more managerial, athletic, and social than intellectual. There’s a lot of mention of “collaboration”–but nothing about thinking about the subject on one’s own.

If students in a classroom are all putting their mind to the topic at hand (not because the teacher has “engaged” them but because this is what they do as a matter of course), and if the teacher knows the topic thoroughly and has considered it from many angles, then the learning will come easily–if there is a good curriculum, and if the students have the requisite background knowledge. That sounds like a lot of “ifs,”–but it comes down to something simple: when you enter the classroom, you have to be willing to set distractions aside and honor the subject matter. Honoring it does not mean treating it as dogma. It means being willing to make sense of it, ask questions about it, and carry it in your mind even when class is over.

If the above conditions are absent, then that is the problem, period. It is not a question of who is doing the talking, or how well or poorly the teachers have been trained.

Suppose I am a math teacher. (I am not and never have been; I currently teach philosophy.) Suppose I am teaching students to solve a problem of the following kind: “A train travels an average of 90 miles per hour for the first half of its journey, and an average of 100 miles per hour for the entire trip. What was the train’s average speed for the second half of the journey?” First I must establish that by “half” I mean half of the distance traveled. Then I must start to anticipate errors and misunderstandings. (Someone will likely offer the answer “10 miles”; another might offer “110 miles.”) I must be able to get other students to explain why these are not correct.

Then how to proceed? I ask the students what information we have, and what we are trying to find out. We know that the journey consists of two equal parts. It doesn’t matter how long each one is, since we are looking at speed, not distance traveled. So, we will call it d, but we are not going to try to find out what *d* is. It does not matter here.

Let t_{1 }designate the time taken (in hours) by the first half of the trip; t_{2, }the time taken by the second half, and t the total time.

So, we know that d/t_{1} = 90 mph for the first half. Thus, **t**_{1}= d/90.

We don’t know what d/t_{2} is for the second half, since we don’t know the train’s speed, or rate (r) for the second half. Thus, **t**_{2} = d/r.

We know that 2d/t (total distance divided by total time) = 100 mph. Thus, **t = 2d/100**.

We know that t = t_{1} + t_{2}.

Thus, t = 2d/100 = d/90 + d/r. (One could call on a student to perform this step.)

Thus, 2d/100 = (d/90 + d/r).

Thus, 2/100 = 1/90 + 1/r. (Divide both sides by d.)

Thus, 1/50 = 1/90 + 1/r.

Thus, 1/r = 1/50 – 1/90.

Thus, 1/r = 4/450. (Some students might arrive at 4/45–important to be alert to this.)

Thus, r = 450/4 = 112.5 mph.

As I lay this out, I can see some of the misconceptions and confusion that might arise. Some students might remain convinced that we need to find out what d is. Some might assume that t_{1} and t_{2} are equal. Some might grasp the steps but not know how to go about doing this themselves. Some might not know how to check the answer at the end.

But if I go to class prepared to address these issues, and if the students continually ask themselves (internally) what they understand and what they don’t, then even this amateur lesson will get somewhere–unless the levels in the class are so disparate that some students don’t know what an equal sign is. Of course, doing this day after day is another matter; a teacher needs extensive practice in the subject matter in order to prepare lessons fluently.

I am not proposing a magic solution here. Attention is not easily come by, nor is flexible thinking. Nor is curriculum or background knowledge. (Math teachers will probably point out errors of presentation and terminology in my example above.)

But if we ignore students’ obligation to put their mind to the lesson (in class and outside), teachers’ obligation to think it through thoroughly, and schools’ obligation to honor and support such thinking, we will continue with confused jargon and hapless reforms. Moreover, classrooms that do have such qualities will be dismissed as irrelevant exceptions.

*Note: I made a few revisions to this piece after posting it.*

*Update 8/23/2014: In response to a reader’s comment, I changed “elementary school teacher Magdalene Lampert” to “elementary school teacher and scholar Magdalene Lampert.” It was not my intention to understate her academic credentials–or to comment on her work.*